The Regional Structural Setting of the 2008 Wells Earthquake and Town Creek Flat Basin — Implications for the Wells Earthquake Fault and Adjacent Structures

نویسندگان

  • Christopher D. Henry
  • Joseph P. Colgan
چکیده

The 2008 Wells earthquake occurred on a northeast-striking, southeast-dipping fault that is clearly delineated by the aftershock swarm to a depth of 10-12 km below sea level. However, Cenozoic rocks and structures around Wells primarily record east-west extension along northto north-northeast-striking, west-dipping normal faults that formed during the middle Miocene. These faults are responsible for the strong eastward tilt of most basins and ranges in the area, including the Town Creek Flat basin (the location of the earthquake) and the adjacent Snake Mountains and western Windermere Hills. These older west-dipping faults are locally overprinted by a younger generation of east-dipping, high-angle normal faults that formed as early as the late Miocene and have remained active into the Quaternary. The most prominent of these east-dipping faults is the set of en-échelon, north-striking faults that bounds the east sides of the Ruby Mountains, East Humboldt Range, and Clover Hill (about 5 km southwest of Wells). The northeastern-most of these faults, the Clover Hill fault, projects northward along strike toward the Snake Mountains and the approximately located surface projection of the Wells earthquake fault as defined by aftershock locations. The Clover Hill fault also projects toward a previously unrecognized, east-facing Quaternary fault scarp and line of springs that appear to mark a significant east-dipping normal fault along the western edge of Town Creek Flat. Both western and eastern projections may be northern continuations of the Clover Hill fault. The Wells earthquake occurred along this east-dipping fault system. Two possible alternatives to rupture of a northern continuation of the Clover Hill fault are that the earthquake fault (1) is antithetic to an active west-dipping fault or (2) reactivated a Mesozoic thrust fault that dips east as a result of tilting by the west-dipping faults along the west side of the Snake Mountains. Both alternatives are precluded by the depths of the earthquake and aftershocks, about 8 km and as deep as 12 km, respectively. These depths are below where an antithetic fault would intersect any main fault, and a tilted, formerly shallow and sub-horizontal thrust fault would not extend to depths of more than about 5–6 km. The east-dipping, high-angle, earthquake fault cuts older west-dipping faults rather than reactivating them, highlighting a change in the structural style of Basin and Range extension in this region from closely-spaced, west-dipping faults that rotated significantly during slip and accommodated large-magnitude extension, to widely-spaced, high-angle faults that accommodate much less total strain over a long time span.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bedrock Geology of the Ranges Bounding the Wells Earthquake of February 21 , 2008

The Wells 6.0 magnitude earthquake of February 21, 2008, occurred on a previously unrecognized northeast-striking southeast-dipping fault situated beneath Town Creek Flat, a few miles north of Wells, Nevada. Focal depth of the earthquake was 5 miles (8 km). Bedrock geology in the surrounding ranges did not indicate the existence of the fault prior to the earthquake, and no surface rupture has b...

متن کامل

Stochastic analysis of two adjacent structures subjected to structural pounding under earthquake excitation

Seismic pounding occurs as a result of lateral vibration and insufficient separation distance between two adjacent structures during earthquake excitation. This research aims to evaluate the stochastic behavior of adjacent structures with equal heights under earthquake-induced pounding. For this purpose, many stochastic analyses through comprehensive numerical simulations are carried out. About...

متن کامل

The Generation of Earthquake PGA Using Stochastic Finite Fault Method in Alborz Region

Time-history analysis is defined as a kind of dynamic analysis increasingly used in design of structures and evaluation of existing ones. One of the important issues in the Time-history analysis is selecting earthquake records. In this case, seismic design provisions states that time histories shall have similar source mechanisms, geological and seismological features with region under study. A...

متن کامل

Structural concepts for Soltanieh fault zone (NW Iran)

Active deformation in Alborz range is due to N-S convergence between Arabia and Eurasia. This paper provides geomorphic traces of regional deformation in NW Iran in order to characterize active faulting on major faults. Soltanieh and North Zanjan fault systems are involved in convergence boundary extent between South Caspian Basin and Central Iran. Soltanieh and North Zanjan faults are major re...

متن کامل

Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas.

Between November 2009 and September 2011, temporary seismographs deployed under the EarthScope USArray program were situated on a 70-km grid covering the Barnett Shale in Texas, recording data that allowed sensing and locating regional earthquakes with magnitudes 1.5 and larger. I analyzed these data and located 67 earthquakes, more than eight times as many as reported by the National Earthquak...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011